

हैदराबाद विश्वविद्यालय
University of Hyderabad

How to Use Language as a Strategic Resource for Effective Oral and Written Communication

A Workshop for Military Engineer Services Officers

6 January 2026

9.30 AM – 11.20 AM

8th Foundation Course for Military Engineer Services Officers

15 December 2025 - 21 March 2026

Dr MCR HRD Institute, Hyderabad.

Dr. Jasti Appa Swami
Centre for English Language Studies
School of Humanities
University of Hyderabad

Overview

- Objective: To equip MES officers with advanced language resources to enhance precision, command, and reporting
 - Moving beyond "correct grammar" to "effective functional communication."
 - Mastering Precision: The "Ideational" function in technical specs.
 - Navigating Hierarchy: The "Interpersonal" function in command and negotiation.
 - Structuring for Impact: The "Textual" function in reporting.

Why Language Matters in Military Engineering

- Engineering requires absolute precision with physical reality (blueprints, load-bearing capacities).
- Military operations require absolute clarity in hierarchy and intent (orders, briefings).
- MES sits at the intersection: A vague specification can lead to structural failure; a vague order can lead to mission failure.
- We need linguistic precision to match engineering precision.
- **Task:** Translate the vague civilian phrase "fix the road issue" into an MES directive.

- **Task:** Translate the vague civilian phrase "fix the road issue" into an MES directive.
- (Example) "Deploy 2x JCB to Grid 45A. Fill and compact the 3m sinkhole using aggregate type B by 1600 hrs."

Language as a System of Choices

- Language is a "resource potential" – a giant toolbox.
- You don't just "say stuff"; you make subconscious choices to achieve goals.
- Better choices = better engineering outcomes (safety, budget, timeliness).
- **Task:** A subordinate emails: "The wall is having issues."
 - Is this a bad linguistic choice in MES? Why?

The Triad of Communication

- Every time you speak or write, you are doing three things:
 - **Defining Reality (Ideational)**: What is happening? (Technical specs)
 - **Enacting Relationships (Interpersonal)**: Who are we to each other? (Rank/Authority)
 - **Organizing the Message (Textual)**: How is this structured? (Cohesion/Flow)
- **Task:** Identify the three meanings in the utterance below:
 - "Sir, I request permission to pour concrete."

"Sir, I request permission to pour concrete."

- Ideational: The action of pouring concrete.
- Interpersonal: Deferential address ("Sir"), formal request ("request permission") indicating lower rank to higher rank.
- Textual: A standard request structure.

Fitting the Language to the Situation (Register)

- Your linguistic choices change based on
 - *Field* (what's happening: combat engineering vs. barracks maintenance),
 - *Tenor* (who is involved: General vs. Private vs. Contractor), and
 - *Mode* (channel: radio vs. formal report).
- **Task:** You need a structural assessment. How do you ask for it via (A) Radio in a crisis, and (B) Email for future planning?

- **Task:** You need a structural assessment. How do you ask for it via (A) Radio in a crisis, and (B) Email for future planning?
- **Solution:**
 - (A) "Alpha 1, this is Charlie. Need immediate eyes on bridge structure at Checkpoint Zulu. Is it load-bearing? Over."
 - (B) "Requesting a full structural integrity assessment of the Zulu bridge by end of month for inclusion in Q3 infrastructure report."

Engineering Reality with Words (Ideational Meaning)

- How engineers use language to define the physical world.
- For MES, this means representing technical processes, participants (objects/people), and circumstances (where/when/how) with absolute clarity.
- **Task:** Look around the room. Name three objects using precise engineering language rather than common nouns.

- **Task:** Look around the room. Name three objects using precise engineering language rather than common nouns.
- **Solution:** (Examples) Instead of "light," use "luminaire assembly." Instead of "wall," use "load-bearing masonry partition."

The Power of Naming (Technical Nouns)

- Every discipline uses specific "participants" (nouns) to categorize reality.
 - Layman: "A big hole in the road."
 - MES Officer: "A 4m x 4m crater caused by IED, compromising the sub-base aggregate."
- Using the correct technical noun is the first step in defining the problem scope.
- Use adjectives/classifiers(pre-modifiers) and prepositional phrases(post-modifiers) to lock down meaning.
- **Task:** Expand the vague noun "the equipment" into a precise noun group for a logistics request.

- **Task:** Expand the vague noun "the equipment" into a precise noun group for a logistics request.
- **Solution:** "The Caterpillar D6T bulldozer with reinforced blade attachment currently located at Depot B."

Operational Verbs act as Force Multipliers

- Engineering is about *doing*. Verbs encode processes.
- Types of verbs:
 - Material (doing: "excavate"),
 - Mental (thinking: "assess"),
 - Relational (being/having: "is located").
- MES writing often suffers from weak Relational verbs.
Use strong Material verbs to drive action.
- **Task:** Change these weak states into strong actions: 1. "The pipe is leaking." 2. "The blueprint is confusing."

- **Task:** Change these weak states into strong actions: 1. "The pipe is leaking." 2. "The blueprint is confusing."
- **Solution:** 1. "The pipe *discharges* water continuously." 2. "The blueprint *obscures* critical junction details."

Locking Down the Details: Circumstances

- "Circumstances" are the prepositional phrases that define the Who, Where, When, How, and Why.
- In MES specs, ambiguity usually hides in the circumstances.
- Vague: "Pour the concrete soon."
- Precise: "Pour the concrete [Process] by 1400 hrs today [Time] at Sector 4 [Location] using rapid-set mix [Manner]."

The Engineer's Favorite Tool: Nominalization

- This is turning a verb (process) into a noun (concept). E.g.
 - "We need to *assess* the damage" becomes "Damage *assessment* is required."
 - "We *eroded* the soil" becomes "Soil *erosion* occurred."
 - "We *inspected* the site" becomes "The *inspection* was completed."
- Pros: Allows you to discuss complex concepts as single entities. Essential for technical reports.
- Cons: Removes the "doer" of the action and can make writing dense and bureaucratic.
- **Task:** Nominalize the verbs in this sentence to make it sound more like a formal report: "Because the dam *failed*, water *flooded* the valley."

- **Task:** Nominalize the verbs in this sentence to make it sound more like a formal report: "Because the dam *failed*, water *flooded* the valley."
- **Solution:** "The *failure* of the dam caused massive *flooding* in the valley."

Speaking the Shared Language

- MES relies on established technical taxonomies (standardized terminology).
- Using non-standard terms breaks ideational clarity.
- Ensure consistency across documents.
- **Task:** A civilian contractor says they will "put down stones for the path base." Translate this to MES taxonomy.

- **Task:** A civilian contractor says they will "put down stones for the path base." Translate this to MES taxonomy.
- **Solution:** "Lay aggregate sub-base for the access road."

The Language of Constraints

- Engineering is about managing constraints.
Language must reflect boundaries.
- Use precise negative markers and limiters (e.g.,
"excluding," "restricted to," "maximum capacity").
- **Task:** Write a spec constraint preventing heavy vehicles on a specific bridge.

- **Task:** Write a spec constraint preventing heavy vehicles on a specific bridge.
- **Solution:** "Bridge access is *restricted to* vehicles with a gross axle weight *not exceeding* 5 tons."

Engineering Logic: Conjunctions

- Engineers must explain *why* things happen.
- Don't just list facts; connect them with logical connectors.
- Use precise connectors: "because," "consequently," "therefore," "in order to," "despite."
- **Task:** Link these two facts causally for an accident report: "The soil was saturated." "The retaining wall collapsed."

- **Task:** Link these two facts causally for an accident report: "The soil was saturated." "The retaining wall collapsed."
- **Solution:** "The retaining wall collapsed *as a direct result of* soil saturation."

The Cost of Vague Ideation

- Ambiguity arises when one linguistic choice could mean two distinct physical realities.
- Watch for dangling modifiers or unclear pronoun references ("Fix the pipe near the tank and paint *it*." Paint what? The pipe or tank?)

Enacting Relationships (Interpersonal Meaning)

Language as Rank and Relationship

- Language is how we establish hierarchy, express judgment, and influence behavior.
- In MES, this involves giving orders, negotiating with contractors, and briefing commanders.
- **Task:** Identify the relationship dynamics here: "Could you possibly take a look at this spec when you have a moment?"

- **Task:** Identify the relationship dynamics here: "Could you possibly take a look at this spec when you have a moment?"
- **Solution:** Low power distance, polite, tentative. Likely peer-to-peer or subordinate-to-superior in a non-urgent context.

Giving Information vs. Demanding Goods/Services

- The grammatical "Mood" system defines what you are doing to the listener.
- *Declarative*: Giving info (briefing).
- *Imperative*: Demanding action (orders).
- *Interrogative*: Demanding info (questioning).
- **Task:** Change this declarative statement into an imperative order for immediate action: "The perimeter fence needs securing."

- **Task:** Change this declarative statement into an imperative order for immediate action: "The perimeter fence needs securing."
- **Solution:** "Secure the perimeter fence immediately."

Engineering Assessment: How Sure Are You?

- Modality is the space between "Yes" and "No." It expresses probability and obligation.
- Engineers must be precise about uncertainty.
- High Modality: "The dam *will* break." "You *must* evacuate."
- Low Modality: "The dam *might* break." "You *should* consider evacuating."

Expressing Necessity (Modulation)

- This is about "command" – degrees of obligation between "do it" and "don't do it."
- Crucial for safety specs and orders.
- High: must, required to. Median: should, supposed to. Low: may, allowed to.
- **Task:** Rewrite a safety rule for contractors using high obligation modality: "It is suggested that hard hats are worn."

- **Task:** Rewrite a safety rule for contractors using high obligation modality: "It is suggested that hard hats are worn."
- **Solution:** "Hard hats *must be worn* at all times on site."

Expressing Professional Judgment

- How do you insert your opinion professionally?
- Use evaluative adjectives and adverbs geared toward engineering values (efficiency, safety, durability) rather than personal feelings.
- **Task:** Replace the subjective evaluation "The contractor did a bad job" with objective engineering evaluation.

- **Task:** Replace the subjective evaluation "The contractor did a bad job" with objective engineering evaluation.
- **Solution:** "The contractor's work was *sub-standard* and *failed to meet specifications*."

Managing Hierarchy (Upward Communication)

Briefing Superiors

- Goal: Provide clarity without usurping authority
- Use declarative mood (give facts), high certainty modality where supported by data, and respectful forms of address.
- Task: You need the CO to sign off on a budget increase. How do you phrase the final "ask"?

- **Task:** You need the CO to sign off on a budget increase. How do you phrase the final "ask"?
- **Solution:** "Therefore, Sir, I recommend approval of the 10% contingency fund to ensure timely project completion." (Recommendation + justification).

Managing Hierarchy (Downward Communication) Issuing Directives

- Goal: Clarity and compliance.
- Use imperative mood for direct orders. Use high obligation modality (must/shall) for standing orders or specs.
- Be direct, but maintain professional respect to ensure morale.

Lateral Communication (Negotiation)

Dealing with Contractors and Peers

- You often cannot use imperatives with civilians or equal ranks.
- Use modulated interrogatives ("Can we agree on...?") and objective modality references ("The contract requires...").
- **Task:** A contractor is late. Don't order them; negotiate using contractual obligation.

- **Task:** A contractor is late. Don't order them; negotiate using contractual obligation.
- **Solution:** "According to Schedule B of the contract, this phase *was required to be* finished yesterday. What is your recovery plan?"

Objectifying Interpersonal Conflict

Depersonalizing Disagreement

- When disagreeing on technical grounds, shift the focus from the *person* ("You are wrong") to the *data/process* ("That calculation is incorrect").
- **Task:** Rephrase: "Lieutenant, you messed up the survey coordinates."

- **Task:** Rephrase: "Lieutenant, you messed up the survey coordinates."
- **Solution:** "Lieutenant, these survey coordinates do not align with the existing GIS data. They need re-verification."

The Difficult Email

Applied Interpersonal Meaning: The Delay Notification

- Scenario: You must inform a superior a project is late due to your team's error.
 - Balance taking responsibility (interpersonal) with objective facts (ideational).
- **Task:** Write the opening sentence.

- **Task:** Write the opening sentence.
- **Solution:** "Sir, I regret to report that Operation Road-Link is delayed by 48 hours due to an error in our initial soil estimation."

Engineering the Flow of Information

- Textual meaning is about structure, cohesion, and flow.
- It's not just *what* you say, but the *order* in which you say it.
- This function makes a text "hang together" as a coherent whole.
- For MES officers, this means structuring reports, briefings, and emails so the most important info is absorbed first and easily.

"Given" and the "New"

- English sentences usually move from "Given" information (Theme, at the start) to "New" information (Rheme, at the end).
- The start of the sentence flags to the reader "what this is about."
- Keep the topic string consistent.
- *Poor Flow*: "The bridge is damaged. It was hit by a truck. The truck was overloaded." (Topic jumps around).
- *Good Flow*: "The bridge is damaged. The damage was caused by an overloaded truck." (Connects the end of one sentence to the start of the next).

The Principle of "Front-Loading"

BLUF: Bottom Line Up Front

- In academia, you build an argument to a conclusion.
- In military reporting, you state the conclusion first, then support it.
- Commanders might only read the first paragraph.
- *Bad*: [Page of details] -> "Therefore, the bridge is unsafe."
- *Good*: "The bridge is unsafe for loads over 10T. Supporting details follow..."
- **Task**: Reorganize for BLUF: "We tested the water. The Ph was low. Bacteria levels were high. The water is unsafe to drink."

- **Task:** Reorganize for BLUF: "We tested the water. The Ph was low. Bacteria levels were high. The water is unsafe to drink."
- **Solution:** "The water is unsafe to drink due to low Ph and high bacteria levels observed during testing."

Information Density (Lexical Density)

Managing the Cognitive Load

- Engineering texts are "lexically dense"—they pack many technical content words into short sentences.
- This is efficient for experts but overwhelming for non-experts.
- Know your audience. For senior command (non-engineers), "unpack" the density by using more grammatical words and simpler sentence structures.
- Remember nominalization (turning verbs into nouns)? It's great for textual flow.
- It allows you to summarize a whole previous sentence into one noun at the start of the next sentence.
- **Task:** Connect these using nominalization: "We excavated the site yesterday. This allowed us to see the bedrock."

- **Task:** Connect these using nominalization: "We excavated the site yesterday. This allowed us to see the bedrock."
- **Solution:** "We excavated the site yesterday. *This excavation* allowed us to see the bedrock."

The Integrated MES Communicator

- A good officer unconsciously balances all three metafunctions.
- *Scenario*: Giving a safety briefing to tired troops.
- *Ideational*: Precise technical specs of the hazard.
- *Interpersonal*: Authoritative but encouraging tone (high obligation modality).
- *Textual*: Clear sequence of required actions (first, next, finally).
- **Task**: Analyze: "Team, listen up. To avoid electrical shock, you must lock-out/tag-out the main breaker before opening this panel."

- **Task:** Analyze: "Team, listen up. To avoid electrical shock, you must lock-out/tag-out the main breaker before opening this panel."
- **Solution:** Interpersonal (Imperative "listen up", high obligation "must"); Ideational (precise technical cause/effect "avoid electrical shock," technical process "lock-out/tag-out"); Textual (logical sequence: do X before Y).

References

- Derewianka, B. (2014). Supporting students in the move from spoken to written language. *Englishes in multilingual contexts: Language variation and education*, 165-181.
- Derewianka, B. (2003) 'Making grammar relevant to students' lives' in G. Bull and M. Anstey (eds) *The Literacy Lexicon* (Second Edition). Pearson, 37-50
- Halliday (1998). Language and Knowledge - the unpacking of text. *Text in Education and Society*, 157-178
- Halliday, M.A.K. (1975). *Learning how to mean: Explorations in the development of language*. London: Edward Arnold
- Painter, C. (1984) *Into the Mothertongue: A Case Study in Early Language Development*. London: Pinter

Thank you

